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Abstract. An unstable inflection point developing in an oncoming two-dimensional boundary layer can give rise to 
nonlinear three-dimensional inflectional-wave/vortex interaction as described in recent papers by Hall and Smith 
[1], Brown et al. [2], and Smith et al. [3]. In the current study on the compressible range the flow is examined 
theoretically just downstream of the linear neutral position, in order to understand how the interaction may be 
initiated. The research addresses both moderately and strongly compressible regimes. In the latter regime the 
vorticity mode, the most dangerous one, is taken as the wave part, causing the hypersonic interaction to become 
concentrated in a thin temperature-adjustment layer lying at the outer edge of the boundary layer, just below the free 
stream. In both regimes, the result is a nonlinear integro-differential equation for the wave-pressure which implies 
four different types of downstream behaviour for the interaction - a far-downstream saturation, a finite-distance 
singularity, exponentially decaying waves (leaving pure vortex motion) or periodicity. In a principal finding of the 
study, the coefficients of the equation are worked out explicitly for hypersonic flow, and in particular for the case 
of unit Prandtl number and a Chapman fluid, where it is shown that for sufficiently high wall temperatures the 
wave angle of propagation must lie between 45 ° and 90 ° relative to the free-stream direction and also no periodic 
solutions may occur then. The theory applies also to wake flows and others. Connections with experimental findings 
are noted. 

1. I n t r o d u c t i o n  

In practical configurations, including boundary layers, free shear layers and wakes, transition 
of  compressible-fluid flows is a very significant phenomenon indeed with regard to the per- 
formance of  various transonic, supersonic and hypersonic flight vehicles and turbine blades as 
well as to designing tunnel tests. See for example the review on hypersonic flow by Townend 
[4]. Experiments in the hypersonic range in particular point to transition originating at the 
outer edge of  the boundary layer, a finding which is of  much interest. On the theoretical side, 
however, comparatively little is known on compressible transition, especially for the hyper- 
sonic range, beyond linear stability theory and corresponding exp(N) methods. Our concern 
here is to attempt first to advance theoretical understanding of  the necessarily nonlinear pro- 
cesses involved in transition, and specifically to focus attention on what appears to be one of  
the most readily encountered transition paths, occurring at remarkably low amplitudes and 
associated with vortex/wave interaction. Second, and in consequence, it is found that explicit 
results are obtainable in the hypersonic range, in contrast with lower Mach numbers. Third, 
a possible theoretical explanation seems to emerge for the experimental finding above in the 
hypersonic range. 

Vortex/wave interaction theory is one of  the most recent nonlinear theories aimed at 
increasing insight and possible modelling of  a flow's transition from a laminar to a turbulent 
state at large Reynolds numbers. It follows the theories of  pressure-displacement interaction 
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(e.g. [15-18]) and nonlinear Euler interaction (e.g. [19,20]) and as with these theories it 
is of a rational nature. Vortex/wave interactions arise in instability and transition when a 
small-amplitude three-dimensional wave disturbance self interacts, under the influence of 
inertia, to induce a mean vortical component and this vortical component is sufficiently large 
to alter nonlinearly the erstwhile linear evolution of the wave. Typically the wave part has 
relatively short time and length scales whereas the vortex part, composed of longitudinal 
streamwise vortices, has longer length scales in general. Vortex/wave interaction is termed 
weak or strong according as to whether the vortical mean-flow correction is small or of order 
unity, respectively, relative to the original basic flow. 

Vortex/wave interaction theory has been developed for two main types of wave, namely 
viscous Tollmien-Schlichting and inviscid Rayleigh-type inflectional waves. More attention 
has been directed towards the former, see e.g. refs. [21-28]. However, vortex/inflectional- 
wave interactions are seemingly more significant in the sense that they can be triggered by 
considerably smaller disturbances than in the counterpart Tollmien-Schlichting case. In view 
of this significant factor, a rational explanation of vortex/inflectional-wave interaction has 
been sought, starting with Hall and Smith's [1] findings for compressible boundary layers 
(based on ideas in the above papers). They demonstrated that much of the interaction is 
essentially concentrated in the relatively thin critical layer, i.e. the region where the near- 
neutral wave's behaviour is adjusted by viscous forces from one side of the generalised 
inflection point to the other. This is due in part to the singular nature of the wave-amplitude 
at the approach to the critical layer, leading to an amplified wave-forcing therein. In fact, 
the forcing is sufficiently powerful to produce a discontinuity in the vortex-spanwise shear at 
the boundary-layer/critical-layer edges. Later, the Hall--Smith theory was extended to include 
cross-flow effects [27] and also examined close to the input station [1,2,21-23,39]. In the 
paper by Brown et al., the authors were keen to see how the Hall-Smith interaction starts and 
they discovered that the wave-pressure amplitude possess an algebraic bifurcation from a zero 
value to a non-zero value. A shorter streamwise length scale was subsequently identified in 
Smith et al. [3] over which previously neglected streamwise variations of the wave pressure 
come into play, allowing the aforesaid discontinuity or bifurcation to be removed/smoothed 
out. As a result a number of alternative transition paths were identified on this shorter length 
scale. Further, a common feature in both of the last-two mentioned papers is the existence 
of a thin buffer layer, embedding the even thinner critical layer and within which the main 
viscous-inviscid mean motion is effectively localised. 

Here we are interested in adapting the interactive flow structure derived in the incompress- 
ible regime by Smith et al. [3] to accommodate increased compressibility; this is firstly for 
O(1) values of the Mach number and secondly in the hypersonic limit of large Mach number. 
Regarding the latter, we observe that two main types of neutral inviscid mode are known to 
exist in highly compressible flows, these being the acoustic modes [6,9,10,30] and the vorticity 
mode [9]. Whereas the acoustic modes occupy the entire boundary layer, the vorticity mode is 
in effect confined to a relatively thin layer which resides in the outer reaches of the boundary 
layer, is sometimes termed the vorticity layer, and embeds the even-thinner critical layer. The 
vorticity layer itself emerges as a result of the relatively high basic-flow temperature having 
to adjust to that of the much cooler free stream, and hence is often referred to alternatively 
as the 'temperature-adjustment' layer. Of the two types of mode above, the vorticity mode 
has a considerably higher growth rate and so is naturally of most concern to us. Part of our 
aim indeed in this study is to find out the nonlinear counterpart of the vorticity mode when 
it becomes involved in a wave/vortex interaction of the type described above in hypersonic 
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flow. This should allow eventually a firm link to be established with the experimental results 
by Holden [5] of transition emanating from the outer reaches of the boundary layer at high 
Mach numbers. We mention in passing that several reviews have been published recently 
(e.g. Cheng [31,32], Treanor [33]), which offer useful background knowledge on high-Mach- 
number modes as well as many other topics of interest in hypersonic flows; again, the present 
theory applies to wakes (see [34]) and other flows as well as boundary layers. 

In Section 2 the formulation of the interactive flow problem is given, including a derivation 
of the important scalings in the wave/vortex interaction. The interaction problem for a com- 
pressible boundary layer at order-one Mach number is presented in Section 3, resulting in a 
nonlinear integro-differential equation governing the amplitude response of the wave. Certain 
comparisons are made here with the incompressible counterpart in [3], especially with regard 
to the next stage in the flow development downstream (see also independent work by Leib and 
Lee [35]). In fact, the broad form of the equation is identical (albeit with different coefficients 
of course) with the incompressible case and consequently the downstream options or different 
transition paths are invariant. These are downstream saturation, finite-distance singularity, 
pure-vortex motion downstream and nonlinear periodic motion, and are explained in detail 
at the end of Section 3. The flow solution is then examined for the regime of high Mach 
number in Section 4; the results of Smith and Brown [9] and others would tend to suggest 
overall that high-Mach-number predictions in practice can work well in the Mach-number 
range beyond about 3 or 4, in contrast with a subsequent study by Blackaby, Cowley and 
Hall [12], although really the range is unknown in advance. It is shown in Section 4 that 
for the nonlinear extension of the vorticity mode the interaction is essentially confined to 
the temperature-adjustment layer, due to the rapid decay of the wave part outside this layer. 
Hence the previous importance of the linear Stokes or wall-layer contribution to the evolution 
of the wave amplitude now becomes negligible. The special case of a model fluid (that is, a 
Chapman fluid with unit Prandtl number) is considered later in this section, and interesting 
results are obtained. In particular, it is found that for sufficiently high wall temperatures no 
periodic solutions are possible and that the wave angle of propagation has to lie between 45 ° 
and 90 °, whereas for lower temperatures only periodic solutions are possible with the wave 
angle between 0 ° and 45 °. Further developments of the wave/vortex interaction, including 
speculation on the first breakdown of the analysis due to further increases in the Mach number, 
along with final comments are given in Section 5. 

In the following work, the velocities u~(u ,v ,w) ,  the pressure pc~aZ'y-lp, the Carte- 
sian coordinates l~(x,  y, z), the time l~u~lt ,  the density poop, the viscosity # ~ #  and the 
temperature a 2 (-)' - 1 )-  1 cp 1T are scaled in the form 

[ u , v , w , p , x , y , z , t , p , # , T ]  = [?2,£6Q,£6?.O, j0 ,~,~69,£62, /~f ,# ,~/ : ' ] .  (1.1a-k) 

Here u~ ,  p~ ,  #oo represent the free-stream values of the streamwise velocity, the density 
and the viscosity respectively, l~  denotes the typical global length scale (e.g. the distance 
from the leading edge of the flat plate or airfoil, or the chord length), 7 = Cp/Cv is the 
ratio of the specific heat at constant pressure to that at constant density, and a is the speed 
of sound. In (1.1a-k) above, e = Re -1/12 is small, given that the global Reynolds number 
Re = u ~ l ~ p ~ # ~  1 is taken as a large parameter, and the Mach number M ~  = u~a -1 is 
O(1), at least initially. See Section 4 for extensions to the hypersonic range. 
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Substituting (1. la-k)  into the compressible Navier-Stokes equations gives the governing 
equations of motion 

~ + (ts~i)e + (tSO) o + (~5~)e = 0, (1.2a) 

~ +/5(~2fie + vu9 + w ~ )  = -16e/7 M 2  + ~12[(2/2~e)~ + (/2"Oe)O + 

+(/2w:~):'] + (/2'~0)0 + (/2~2=,)~, (1.2b) 

/3~dt + fi(Q'O~ + V'O0 + ~0~,) -12- 2 
= -~ po/'rM~ +,~z[(/2o~)~] + 

+(a~o)~ + (2/2oo)o + [a(% + e~)]~, (1.2c) 

pff)~ + p(~Zff3~ + OffJft + ffJff3~.) = -£-12ff~. / 'yM2 + (E12[(/2'tO~).~] + (/.~'0,~.):~ + 

+[~(% + ~)]0 + ( 2 ~ ) ~ ,  (1.2d) 

fi2O = 16, /2 = CT, (1.2e,f) 

~7~ + ~ ( ~  + o~0 + ~ )  = O'-1[£12(/2~'~)~ + (/2~/~'g),0 + (/2~/~')~] + 

+ (7  - 1 ) M ~  + fi16e + 0160 + ~16e) + 
+ ( 7  - 2 - - 2  1)M~o#(ua + a2). 

(1.2g) 

These represent in turn the equations of Continuity, momentum in the three Cartesian directions, 
state, Chapman's viscosity-temperature law, and energy, and they are analysed in detail in 
the subsequent sections. Finally here, we note that C is the Chapman constant while a is the 
Prandtl number. 

2. Formulation of the Problem 

It is well known from classical linear instability theory that small three-dimensional inviscid 
inflectional disturbances (say of order h relative to the basic-flow size) in compressible flows 
are governed by the generalised linear Rayleigh equation for wave pressure, namely 

02pw `92pw 2 d / f / /d00pw c~2(1 -/k/'2)pw = 0 (2.1) 
-ffp- + b-fi M ,90 

[6,30] for a two-dimensional input flow, subject to the boundary conditions 

OP~ (0, ~,) = pw(oo, ~') = 0. (2.2a,b) 
,90 

The scaled wave pressure here is written as 'Pw (0, ~')E+ complex conjugate', where 

E - exp[i(a(~o)X - f~fi)]. (2.3) 

The fast temporal coordinate is t-I - e -6~- whereas its spatial streamwise counterpart X is 
defined by 

¢~--6 f Ot(:~) d:~. (2.4) o~(;~0)X d 
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Here for a neutral disturbance ~ is a prescribed real frequency while c~(.~) (also real) defines 
the variable streamwise wavenumber, which has to be determined from the analysis. Also, 

= ~o denotes the upstream neutral starting point of the wave/vortex interaction. 
The main effect so far on the wave due to the basic flow is reflected by the term 

19I - (~z - c ) M ~ / T  1/2 (2.5) 

in (2.1) above. Here ~, 7' are the velocity and temperature profiles of the basic flow, respec- 
tively, and c(Y:) is the effective wavespeed, satisfying 

c(~) = f~/a(~,) ,  (2.6) 

that would determine the temporal instability of the perturbation if linear. Since we are 
examining near-neutral disturbances, the quantity c is real to leading order, from which it 
can be deduced that a regular solution in wave pressure is only allowable if we impose the 
generalised inflection-point condition 

d2j~/ 
= 0  at 0 = f ( : ~ , ~ ) .  (2.7) 

d92 

Here f denotes the critical-level surface which is the solution of fi = c(.~) [36,37]. 
The algebraic response of the three-dimensional wave near the point of inflection is given 

by 

[u~o,v~o,w~o,pw] ,,~ h[(9 - f ) - l ,  1(9 - f ) - l ,  1] (2.Sam) 

as 9 --+ f+ ,  where (uw, vw, ww)  denotes the wave velocity. The singularities here are damped 
out in a thin viscous critical layer of relative thickness O(e 2) which embeds the inflectional 
surface 9 = f (x ,  9). 

It follows that wave-wave interaction is considerably larger in the critical layer, compared 
with anywhere else within the boundary layer, as a result of the amplified disturbance speed 
there, i.e. in (2.8a,c), and consequently the wave forcing on the vortex is essentially confined 
to this layer and just outside it. In particular, from the spanwise momentum balances, the 
spanwise velocity component of the vortex wv satisfies 

d2wv _ h2e_ 6 / _ OWw O'ff)w O'ff)w \ (2.9) 

+ --6-U + I 

where ( ) alludes to the vortex component of the enclosed expression, Y is the local critical- 
layer coordinate as defined later and (~,o, Ow, tbw) is the scaled representation of the wave 
velocity. To account for the dynamics in the critical layer as reflected in (2.9), the spanwise 
velocity component of the vortex must be discontinuous in its first derivative across 9 = f ,  
satisfying the condition 

= h2e-8J(Y: ,  ~). (2.10) 
L d9 J:_ 

Here J is a measure of the scaled wave-wave forcing, whose value is shown later to have the 
form 

J ( x ' 2 ) = K "~z "~z  ' 
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with/3w(.~, ;~) being the critical-layer wave pressure and K a known constant. Through 
the continuity balances, we deduce that the streamwise component of vortex velocity has 
magnitude o(hEe - 14), SO that significant interaction follows when the input amplitude is 

h ,,~ £7. (2.11) 

It is interesting to note that the order of magnitude of the wave amplitude remains unaffected 
as Moo --+ O, i.e. as the incompressible case is recovered [3]. On the other hand for Moo >> 1 
we shall find that the wave amplitude diminishes in order to retain nonlinear interaction: see 
Section 4 below. 

As stated previously, we are interested in studying the wave/vortex interaction close to the 
input (neutral) station. The specific streamwise scale we seek emerges from the balance of 
nonparallelism and linear streamwise variations, i.e. 

[(:~--ff70)~1[£ -6 ~X]"~[QO[ ~ , 

where ~2o + (:~ - ~o)~21 + . . .  is the mean-flow profile expressed as a Taylor series about the 
starting point ~ = ~o. Hence, the required scaling is 

if7 -- :~0 = 63Xl, (2.12) 

say, with Xl being O(1). 
As with the theories for the incompressible range in [3] and [2], the convective forces 

dominate over the viscous forces as regards the vortex motion nearly everywhere in the 
boundary layer (thus rendering the vortex inviscid there). However these forces counterbalance 
in a pair of thin so-called buffer layers (each having relative thickness O(e 3/2) for a viscous- 
inviscid balance) which are separated by the thinner critical layer, and it is within these 
regions that the wave/vortex interaction is effectively concentrated. A full diagram clarifying 
the details of the multi-layered structure is given in Figure 1. 

3. Compressible Interactions in the Sub- or Supersonic Ranges 

3.1. THE CORE REGIONS 

These regions, where ~ = O(1), constitute the majority of the boundary layer (see Figure 1), 
and contain important linear and nonparallel forces that contribute to the alteration of the 
wave-amplitude downstream. The vortex motion turns out to be negligible here, only being a 
significant influence in the critical layer and the buffer layers. The following expansions hold, 
in view of the argument in Section 2 and [3], 

---- ~)'0(Y) + £3Zl ~-.]-1 (Y, 2) + ' ' "  + J U  (0)E + ~10u(1)E + ' " ,  

'v = ~ro(zd, 2) + . . .  + £v(°)E + £4v(1)E + . . . ,  

,~ = e3~clVI, rl (if, ~') + . . .  + ew(°)E + e4w(1)E + . . . ,  

P = 15oo + ¢3x115o + ' "  + ¢7P(°)E + cl°p(1)E + ' " ,  

= Po(Y) + ~3Xl/91(Y, Z) -'{- • • • -'['- e7p(O)E + el°p(1)E + ' " ,  

(3.1 a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 
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Core 

~ ~ m m 

O(Re. -5~*) ..,. ~ ~ B:Buffer  Layer, 
f ~ ~ C.L. : C r i t i c a l  Lay*r. 

- ~ ~ ~ S: $ tok~  Lay©r. 

'If c:L ..... - -  

B 

O(Ro. -z'~) 

O(R,. -s'') 

/ / / / / /  I. / / / / / / / / / /  Pl,,o 

O(Re. - ~ ' )  

Figure 1. Sketch of the oncoming generalised mean-flow profile )~/'(oc (Uo - co)~/~o 1/2) and the subsequent 
wave/vortex-interaction flow structure for M ~  = O(1). 

/2 = /20(Y) d- £3Xl/21 (,~, ~') - ~ ' "  d- e7~(0)E Jr" £10#(1)E d- " ' ,  (3.1f)  

~/~ ---- ~'0(Y) -~- £3xlT1 (Y, ~') -~- " • " -~- e 7T(°)E + e l°T(1)E + " ' ,  (3.1g) 

including nonparallel terms proportional to Xl. Here P0o andP0 denote the basic-flow pressure 
and its gradient evaluated locally, in turn, with the former being prescribed the value I in the 
ensuing work. Elsewhere, the contributions from the oncoming basic flow and its local gradient 
are given the subscripts 0 and 1, respectively. Also, the terms multiplying E (dependent on 
x], Y, z) denote wave contributions with successive orders being given the superscript (0), 
(1), etc. Strictly we should include the complex conjugates of the wave terms in (3. l a g ) ,  but 
these are omitted for the sake of brevity without affecting the following analysis. 

Substituting (3.1a-g) into the compressible Equations (1.2a-g) determines the system of 
equations for each component of the flow, i.e. basic flow or wave. First, the basic flow satisfies 

~blOO --b/9oUl -.-b (/~oT~ro)9 = O, (3.2a)  

/90(UoU1 "4- VoUoff)  = - p o / f M  2 + (#oUo,2)9, (3.2b) 

1 =/5oTo, /3o =/5oT1 +/517'o, /2o = CTo, (3.2c,d,e) 

p(UoT, + VoTe) ( 7  - 1) poor  ° + ~ - 1  ( /2o¢o~)~  + ( 7  2 - - 2 -- - 1 ) / ~ # o U ( ~ .  (3.2f) 
7 

These equations may be solved to reveal that 
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[Po/TM 2 - (/2oUozT)O] + 

ZoCro 
+O~o { ~a: ( [P°/TM2 u~#°EE°~')9'] - fil ) (3.3b) 

o 

-2 -0 - -2 1 1 d [po(~ po~,/po)~, 
+ oho t Cropo , 

- 1)ML L j /  

Here we have used the expansions 

(OZ(fft),C(X)) = (OtO, CO ) + E3Xl(OZ2, C 2 ) +  " " ,  

(3.3c) 

-- (~r o -co)Moo/Td/2, 

for the streamwise wavenumber and wavespeed near .~ = 20. The frequency, defined by 
fl = ac, is a constant prescribed value in our problem, which therefore implies the constraint 

~39 q- P(? -- 2 -~-  -- --/~r2)p (0) = O, 

subject to 

p(O)__+0 as ~3--+c~, p~O)=0 at i f = 0 .  

Here 

aoc2 + azco = O. (3.5) 

The inflectional plane f (~ ,  2) has the localised form 

f (~ ,  2) = 5o + e 3 x 1 5 2  q -  • • • , (3.6) 

where 5o and 52 are both constants, owing to the spanwise-mdependence of Uo, U] and c. 
Lastly, the terms Po, Pl, PlO, Vo simply represent Po, P~,  #1, Vo, in turn, evaluated at ~ = 50. 
We observe that the values of Vo, PlO are determined from the boundary conditions at the wall, 
i.e. U1 = Vo = 0,/51 = Plw at ~ = 0, where Plw is the specified basic-flow density gradient 
at the wall. 

Next, we focus on the leading-order wave system which reduces to the generalised three- 
dimensional Rayleigh equation 

(3.7) 

(3.8a,b) 

(3.9) 

which in effect represents the basic-flow forcing on the wave, is independent of 2. Thus we 
are able to separate variables in p(O) and in particular we may write 

p(O) = r(xl)Po(fl) cos flo~', (3.10) 

(3.4) 
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for a pair of equal waves [exp(4-i/3o~,)] obliquely inclined to the free-stream direction, with 
/30 constant. Here r is the amplitude function of the wave, while Po satisfies 

Pog~ - 2 --~ Po~ - [7o 2 - a2o-~r2]po = O, (3.11) 

with 

Po(c~) = 0, Pog(0) = 0, (3.12a,b) 

from (3.7), (3.8a,b), where 72 = (a2o +/32) is a constant. This system determines in principle 
the eigensolufion for Po and the corresponding characteristic equation that constrains the 
parameters ao,/3o and co. It is convenient to make the normalisation P0(ao) = 1, which we 
are free to do, owing to the homogeneous nature of (3.11), (3.12a,b). 

To fully understand the dynamics of the buffer layer (and, to some extent, the critical layer) 
we need to know the behaviour of the flow solution as ~ = ~o is approached. The important 
results are now summarised. As ~3 --+ ~o ~, 

oo 
~,o = co + ~ bn(fl ~- ?zO)n , (fl = E dn(fln~- ?~°)n ' (3.13a,b) 

n=l n=0 
oo 

Po = 1 + ~ q . 0 -  ~o)" 
n! n=l 

(3.13c) 

Also 
oo 

D o , ~ }  = Z {P.,/9~,,} O-ao)" n! (3.13d,e) 
n-----0 

as 0 --+ ~o ~ and, likewise, similar expressions hold for/~o, #1, To, T1. Here the coefficients 
satisfy 

1 Po + bl/9oVo + p2 ° do - poco , (3.14a) 

dl poco -~0 ~ +blCoPlO+po-- b3 Po + ~ p 2  \ 7 o  + ~  , 

(3.14b) 

d2 = 1 

poco 

+blco (Pn 

3Cplb3 

[(P2 /91 (bl 2/91)) ( P0 ) C ( bl/93 ~ 
- -  ~ o  + -  /90 To po ~ +-/9o 84 Too J + 

4Pl/910'/ - C - ~ o  / /90 + 2pl~ +po  / @3 ~oo/ 

Oblp, (2/91 (bl 120,) llp2 + 4 p ? V o ) ]  

p~ /9~ ~7o  ~ + " po - p--F ' 

(3.14c) 
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from (3.3b), and 

qa = 0, q2 = -72, (3.15a,b) 

22 2 
Too po + 6.oh, poMp, (3.15c) 

from (3.11). It is important to note that the generalised inflection-point condition d2m/d•  2 = 0 
at 0 = 0 implies that 

b2 + blpl/po = 0 (3.16) 

to leading order, and this has been used extensively in the above derivations. Again, the local 
third derivative of the wave pressure q3 cannot be determined by local asymptotic analysis 
but instead has to be found by solving the entire Rayleigh system (3.11), (3.12a,b). 

It is worthwhile here writing down the local series expansion for/f/, about 0 = ~0. It is 

oo Mn(O - 5o) n 
29I = i l  (0 - ao) + ~ n !  (3.17) 

n----3 

as O -+ ao ~, where 

1/2 
M1 = blPo Moo, (3.18a) 

3blP2 9blp 2] fl/2 a,¢ 
M3 = b3 + 2p0 4p ] J .0 -,-oo, (3.18b) 

M4 = [b4 + 2b3Plpo +bl \po(2p3 6plp__2po 2 '1- -~0 )]3P~'~] pl/2Moo. (3.18c) 

We observe that the absence of any coefficient multiplying ( 0 -  a0) 2 in the above expansion 
is simply due to the inflection-point condition. 

Finally in the core, we need to examine the second-order wave system, which is governed 
by a small-perturbation form of (3.11) above, that is 

P~Io-) + Pi~ -- 2-~0 p ~ l )  Or02(1 __ )~f2)p(1) 
M 

_ 2XlM [ (c~0a237/- (ot2/~fl + aoa2M)JtT/z) p(O) + 

+(1~4f10-- MIMO -- piO)] - 
[ (  ~1/2 ~-ff-_, 

aoM OqXl 

-1/2 - 2 ] + a2° (/17/(1- 1~I:)-CoPo MooM )p(O) / co 

(3.19) 
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(3.20) 

The boundary conditions to be satisfied by p(1) a re  

p(1) _+ 0 as f -+ ~ ,  (3.21a) 

p0) matches with the Stokes' layer solution at the wall. (3.21b) 

To analyse the pressure system further, we write 

p(1) = Po(ff)Q1 (Xl, f) cos/3o~" (3.22) 

where, for this spanwise representation to be valid, it is necessary to impose the condition 
37/1~ - 0 (and hence/~12 - 0). After substituting (3/22) into (3.19) and equating coefficients 
of cos/305, we find that 

02Q1 OQ1 _ Xlr(Xl) a l ( f )  "1- - G2(y), (3.23) 
Po --~-- + 2 Pop -  09 M M 

where the prime i denotes differentiation with respect to Xl. Here 

G 1 = 2 [ (OtoOt2J~f- (ot2J~fl d-OloOt2J~f)]~f2)Po-~-()~i~ m ~ 9 )  Po~], (3.24fl) 

[(1,2. ) 1,2 2 ]  
G2 = --2 P o ~ 9 - tPo'-l/z')9 Moo Po9 - a2 (]~/(1 - ]9/2) -co/3 o Moo M ) Po 

ao 
(3.24b) 

are measures of the nonparallel and streamwise-variation forces, in tum. The equation for Q1 
integrates to 

OQ1 192 [Y Po 
Off ]~2 -- Jo )~3 (XlZ'(Xl)Gl(yl) d-ic'°rt(Xl)V2(yl)) dyl d- 

"l" 2 2 QwTr(Xl)' (3.25) 
CoPwM~ 

for 9 less than or greater than ~o in turn, where fiw, Pw denote the constant values of Po and 
Po evaluated at 9 = 0. Here Q+ = 0 while Qw is a complex constant determined through 
matching with the Stokes' layer solution as 9 --+ 0+ (see Appendix A). Specifically we have 

[ .),2 22 2 ( 1 ( 7 _ 1 ) ) ]  (_i_~oco)-1/2 
a°c°pwTM~° Tw - Pw , (3.26) Q~ 

L-p~,  + a-U~/2 p,,, ,), 

where A,,~',,,,'(xl) cos/3oZ denotes the wave temperature at the wall, with ~o being constant- 
valued. 
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It can be deduced that as 9 --4 ~o ~ the following asymptotic behaviour holds for p(1): 

[p(1) ( z l ,  9, ~) - v (I) ( z l ,  ao, ~)] sec flo~ 

~ - 7 2  (9 - ao)2pO)(Zl ao, ~,) sec#oe + 
2 

+ M~(9_?zo){xlr(Xl) [-2-3 a-2 2 (9- ao) 

a-1 1 ] 
+ - 5 -  (9 - ao) 2 L~ 19 - aol + g a ~ ( #  - ao) 2 + 

+icor'(Xl)[--~-- -3 b - 2 ( . ~ - a o ) + b  1 l aft( 9 aO) 2] - T 3 (9 - ao) 2 I~ 19 - aol + ~ - + 

Pw Q~r(xl)(fl - ao) 2 } (3.27) + 2 2 3c6pwMZ 

which reveals a jump in its third derivative there. Here 

a-3 = 2q2(c2 - do) Pl°/Z M°° (3.28a) 

M~ ' 
(3.28b) 

a- i  = q2 (c2 - do) Mll + 4Po 2 + d2 + Po 

(Pll PlP,o~ P~/2Moo 
+b1 ,7oo 700 ) )  M1 ' (3.28c) 

and 
,1/2 a# 

(2-2~ t-'0 ,,-oo 
b_3= \ a o /  M~ ' (3.29a) 

b_2 = ( q__~3 0 2°t°bl '~ plo/2Moo - - ,  (3.29b) 

b-1 q2 (M3 1 (_~ 2p2~)plo/ZMoo (3.29c) 
=so 7o: ' 

where an, bn (n = - 3 , - 2 , . . . )  denote the coefficients of (.~ - ~o) n in the local Laurent 
expansions of PoG1/ fill 3, PoG2/ 2VI 3 respectively, i.e. 

oo oo 
PoG1/2ffl 3 = ~ an(fl - ?zo) n, PoG2/ff/I 3 = ~ bn(9 - ?zo) n. (3.30a,b) 

r~=--3 n=--3 
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4- 4- Lastly, the constant coefficients Ga, G b appearing in (3.27) have the differences 

fo ~ PO G l ( ~ ) d ~ -  a-3 a-2 (3.31a) ca+ - c ~  = - F P  ~-~  ~ + --g-, 

f0 ° Po a 2 ( y )  d f f -  b-3 b-2 a ~  - a~- = - F P  ~-~  ~ + - ~o ' (3.31b) 

and these figure significantly in the later analysis. Here FP denotes the principal value or finite 
part. 

3.2. THE BUFFER LAYERS 

These relatively thin layers lie between the cores and the critical layer (see Figure 1). They 
are formally defined by 

-- f ( ~ ,  2) = E3/2y 1 (3.32) 

where II1 is O(1) and the critical-level surface f is defined in (3.6) above. 
The flow variables expand as 

ft = CO + e3/2blY1 + e3(b2y2/2 + C2Zl) q- e9/2(b3Y?/6 + (b2a2 + d l )z lY1)  + E6~z4 -~ 

--~- • • • + E£11/2(~0 d- £3/2~1 -t- £3Q2 -q- £9/2(,~/In e + fi3) + ' "  ") + ' " ,  (3.33a) 

= VO q- e3/2(a2bl - c2 - plVO/PO - cOPlO/PO)gl -t- e3v2 q- 

q - - . -  -t- E£(~o -t- £3/2'01 q- e3v2 q - . . . )  n t - . . .  , 

= £3/2,W0 q- E£-1/2(,/~ 0 q- £3/2,~1 -q- E3,t02 nt- . . . )  q- . . . ,  

(3.33b) 

(3.33c) 

fi = 1 + e3xlPO q- e6x2pl/2 -t- 

+ E £ 7  (I~o q- £3/2pl -'[- £3p2 n t- £9/2p3 -l- £6p4 -Jr- E15/2(jlgl lne +/35) + "  ") + " - ,  

(3.33d) 

p = PO + E3/ZPlY1 n t- c3(mY? /2  "+" Zl(P la2  q- Pl0)) d- 

"k-e9/Z(P3Y13/6 '1- (P2a2 d- Pl l )ZlY1)  d- e6p4 q- 

+ . - .  + EelU2(tSo + e3/2151 + e3t52 + e9/2(tSt lne + t53) + "  ") + ' " ,  (3.33e) 

= l-t0 n t- e3/2~1Y1 -t- e3 (#2Y?/2  n t- Zl (#lg2 -q- #10)) -Jr 

-t-E9/2(~3Y?/6 -t- (~292 q- ~ l l )Z lYI )  q- ~6U4 q- 

-t- • • • -q-/~Ell/2(/~0 n t- E3/2/~ 1 q- £3]Z 2 -Jr- £9/2(]~/lne +/23) + . . . )  + . . . ,  (3.33f) 

To -t-- £3 / 2TI Y1 -q- E.3 ( T2 Y? / 2 -Jr- x l (T la2  q- TlO)) q- 

-q-f.9/2(T3Y?/6 "q- (T2a2 -k- Tl l )ZlY1)  + e6T4 + 

+ . .  + ~,11/2{eo + d/2% + d ~  + ,9/~(~ in, + ~3/+'" " / + " "  (3.33g) 



624 D.A.R. Davis and E T. Smith 

Here we note that the algebraic terms in (3.3a-g) stem from the Taylor-series representations 
of the basic-flow quantities at 9 = f ,  which are defined in Section 3.1 above. The constant 
a2, defined in (3.6) above, denotes the critical-layer slope and is related to cz by 

bla2 + d0 -- c2. (3.34) 

The terms u4, v2, wo,/94, #4, T4 denote the mean-flow/vortex contributions to the flow, which 
are non-trivially affected by wave-wave forcing. This forcing is of an amplitude-squared 
type and emerges from the critical layer; in particular, it produces a discontinuity in vortex 
spanwise-shear across ~ = f as discussed in Section 2 above and shown in detail in Appendix 
B below. In addition to the above list of wave-affected vortex terms there exists a corresponding 
pressure term (of O(~ 27/2) relative to the free-stream pressure value), but this is totally passive 
regarding the main vortex/wave interaction and need not be addressed here. Again the terms 
multiplying E denote the wave contributions. 

We consider firstly the vortex motion, where spanwise-momentum balances yield the 
diffusion equation 

0w0 02w0 
poco ~ = #o Oy 2 (3.35) 

for w0. The boundary conditions on wo are 

wo -~ 0 as [YI[ -+ cx~ and as Xl -+ -cx~ (3.36a) 

and 

[0w0] 
~ l J  yl=o- ~-- J ° ( x l '  ~)" (3.36b) 

The latter boundary condition stems from the critical-layer analysis of Appendix B, where we 
can also deduce that wo must be continuous across .~ = f .  Here 

1 27r(2/3)2/3(-2/3)! 0 ( 0150 2~ 
J o -  (,./M2)2 (aobl)5/3(C2/po)2/3 0-~ -~z ] '  (3.37) 

with (floE + c.c.) as the buffer-layer wave pressure. 
If we define the Fourier transform of wo with respect to x 1 to be 

/? F(wo) = W0(Xl, Y1, z)e -iwxl dxl (3.38) 
OO 

with real parameter w, then it follows that 

F(Jo) exp[_(icoPowl/#o)l/Zlyll ] (3.39) 
F ( wo ) = - 2( icoPowl / #o ) l /2 

from (3.35), where Wl = w - iT and T is a small real parameter. Inverting (3.39), via the 
Fourier Convolution Theorem, yields 

wo = 20o k, TrcO] (x 1 _ 8)1/2 exp 4C(Xl - s) ds (3.40) 
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on use of #0 = OPo 1 from the equations of viscosity-temperature and state. 
The first non-trivial normal velocity component of the vortex v2, has the solution 

v2 = [ -dl - pl (g2bl - c2) + ( ~ ~0 -~oP2 ) Vo + ~k( 2e°p'~ ~bl ) PlO c°Pl ' " Y 1 2 p o  2 

o fo 0~" w0 d R  - A4(xl, z) (3.41) 

upon integrating the appropriate order of the continuity equation. Here A4(xl, z), an arbitrary 
function, denotes the negative value of v2 at Y1 = 0 which, owing to the flow structure in the 
critical layer (Appendix B), is known to be continuous there. 

Next, we can determine that 

&24 02~4 0 ~g l  
poco ~x l  #o O y  2 - pobl -~z -v w°dl~l' (3.42) 

at the relevant order in the streamwise-momentum equation. Here 

b4 Y4 Xlgl 2 1 f 
'124 = U4 24 (b3a2 + d2) 2 poeo A4 dzl,  (3.43) 

where A4 is a combination of A4 and linear terms multiplying zl .  The boundary conditions 
on ~4 are 

~4 -'~ 0 as zl  -+ --c~ and ~4 is bounded as IYI[ ~ c~. (3.44) 

Furthermore, we assume that ~24, O~4/OY1 are continuous across Y1 = 0, and this is again 
based on the critical-layer analysis. The above system for Q4 together with (3.39) implies 

, b i t  0'9 [F(Jo)] x 

F(lz4) = ~0,.2,~2 ,2 0--'~ 
"'~'0/"0" 1 

x {1--exp (--(ic°P-P~wl)l/2lyl[ ) (l+~(ic°~wl)l/2lyl[)} (3.45) 

according as Y1 > 0 or Y1 < 0, in turn. It follows that u4, 02u4/0Y1 z are zero at Y1 = 0, while 
0294/OY~, O 2 g4/OY13 are continuous and 04~4/OY 4 is discontinuous across II1 = 0. 

It is worth observing that the wave-induced temperature T4 satisfies a system similar in 
type to that of u4, and in particular 

Yl=o+ 
4T4] = C (3.46) OJo 

0gl  4 J 111=0 - 0 Z '  

where G' is constant. Similar jump conditions hold for P4, #4, but these functions, along 
with T4, bear no significant influence on the interaction and therefore need not be addressed 
explicitly. 

Now we turn our attention to the wave motion. The first few orders yield simple solutions, 
namely 

/50 = p(O) (z l, ao, z'), /5(1) = 0, (3.47a,b) 
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where consistent matching with (3.1) has been imposed. Next, we find that 

,t~ 0 _-- i O~o 
aoblpoTM2 Y1 0~" ' 

i (o% 0/2,0) 
60 - 0/ob, p-o.yM 2 \ ~ - , 

i 0(oo 

ao 02 ' 
'2  = -li0/oblPo'TM2voY12 = p(1)(Xl, 50, 2), 

(3.48a,b) 

(3.48c,d) 

and 

1610i ( Oq.O OOxl ¢1 - 0/o.1-~-;. co 
C 02'Wo~ Pl Ylwo, (3.49a) 

1 (q~2 P~o) 6oV1, ~ , i  (O('ol 1 (q~ P~O) ) 65 = ~ Ot'-'O \ 05' + 2 60 , (3.49b,c) 

/53 = - i a o b l P o T M 2  q3vo Y13 - pocoTM~YI 060 ~ + p~(~l,e), (3.49d) 

ipl 60, 7'o = ipl 60, /2o=CT0, (3.49e,f,g) no-  0~obeY1 0/obw2Y1 

where the as yet arbitrary function P3 is unimportant. It is possible to obtain expressions for 
w2, 62, ~22,,4, Pl, T1,/21, but our main interest is with the equation for,5 which, when solved, 
will enable us to match with the wave-pressure jump from the core. The equation for/55 is 
found to be 

1 (02/55 2 0/55 ~ 060 

(60 (0~4 1 0Q4~ 
\0--~1 Y1 u4) + wo Off.' ] + h(xl' Y1,2) (3.50) ~ 2 ~ o p  0 \ 

where 
3 z 2 aob3p2M~a_l a°blPSM~c°b-1 (3.51a, b) ~ ,=  %~ , ~2 - -  %~ , 

are real and constant-valued and lz is a function consisting of a sum of terms of the type 
Yln(n ~ l) which has no im)ortance in the ensuing analysis. Integrating (3.50) we obtain 

10#s  iVl ln[Yl 0 ( 02~° a 2 # o ) +  v2 xlln[gll( 02/50 0/2/50) 
r l  2 0I"1 aob, po ~ O22 aob, p----~ I k 

lbl  k (02,0 ~"  0/2'0)[ ~12 (1~4 - rl ~1,] 0~4~ + [J0 Y1 ]~'ll 02~4 dl'~rl] - 0 ] ~ ' ?  

1 ( o , 0  £) + (o4- 1 -/o 
^ 

+" / i  L ~0 Yi Ld~rl + n-t-(Xl,2) (3.52) 
Y1 ~ 
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according as Y1 > 0 or Y1 < 0, respectively. Here we have used (3.48a,b) to substitute for 
v0, wo, whilst D + are constants of integration. The term in/55 of order [Y1 [3 is required both 
as IYll ~ o (to match with the critical layer solution) and as [Yi[ --+ oo (to match with the 
core solution). 

Firstly, as IYll ~ o we use the classical linear critical-layer property 

o o ,0/ 
FT~ ~2 0Y1 Y,=O- = (ilr) OL~lPO OXl t ~ 

--(iTt) ~0---~1~0 Xl t- '~- - - / " 2  (02/50 ao2/50) , (3.53) 

i.e. we increase the logarithm in (3.52) by (iTr) as Y1 increases from negative to positive 
[36,37]. It is noted, however, that bl > 0 must be imposed, for if bl < 0 then the logarithm 
would be decreased by (iTr) instead, so that (iTr) --+ -(iTr) in (3.53). Therefore we see that 

- -  - -  - -  X l  • 

aoblPo OXl 0;7, '2 c~oblPo \ " ~  

Secondly, as IYll --* oo it follows that 

1 +ooj = D + +  _ _ _ _  Vl[t  

(3.54) 

015o O]L4-°~ 1 02U4d~l, 

(3.55) 

because ~24 is bounded and O~4/OY 1 decays exponentially fast, as 11111 --+ oc. By applying a 
Fourier transformation to the integral in (3.55), then substituting for F024 ) from (3.45), and 
finally inverting, we deduce that 

±°0 1 02~4 dY1 = 4- bl 0 ; F '  
Jo(s,2) ds. (3.56) 

Jo Yl O F ? - ~ - ~ z  J-oo 

The finite-part expression in (3.55) has to equate to 

t oo3)ii 
through matching with the core solution, where we recall that p(i) as defined in (3. ld) satisfies 
(3.27) near 0 = ~o. Hence it follows that 

--71"/,/10 ( 02riO -- a02/50) --iTr/J2 Xl ( 02riO -- t~2/50) + 
t~oblPo OXl ~ , ~  oloblPo \ 

) 0.o o.]s:: 

= M? {xlr(xi)(G+ _ Ga ) + icor,(xl)(G+ _ G: ) 1 } 2 2 Qwr(Xl) COSfl02. 
CoPwM~ 

(3.57) 
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On setting/50 = r(xl)cosfl02 and further, writing r (xl )  = 7 M 2 f ( x l ) ,  the coefficients of 
cos/302 in (3.57) equate to 

+ 
aobl PO aoblp----~ Xl r (Xl  ) 7 t- 

.(2/3)2/3(-2/3)! 
+ co(aobl)5/a(C2/po)2/3 ~0 (2/~02 - q,02)~(x,)/;~ 1~2(s)l as 

- 2 2 Q ,e(xl) (3.58) 
CoPwM~ 

where we have used (3.37) to substitute for J0. In (3.58) the five terms present correspond 
respectively to the influences of the critical-layer phase shift, nonlinearity involving the 
induced vortex feedback, nonparallelism of the basic flow, the core-flow contribution, and the 
Stokes-layer effect. This equation determines the nonlinear evolution of the wave-amplitude 
downstream and is examined next. 

3.3. DOWNSTREAM DEVELOPMENT OF THE INTERACTION 

The governing amplitude equation for the wave has the basic form 

C?~'(Xl) Jr -~?~(Xl)/._Xl 1 =(8)1 ds - (Sx  I Jr i /9)r(xl)  = 0, (3.59) 

where fi~ is a real constant, B, C are complex constants and/9  is a constant which is real 
provided that a suitable linear transformation in Xl has been made. (The constant b can in 
fact be taken as zero without loss of generality as in [3]). 

This equation is identical in form to that obtained in the work on incompressibility by 
Smith, Brown and Brown [3], except that here the constant/3 is complex (owing to a-1 
being non-zero) instead of real as in their paper, and of course we have different values for 
A, B, C, D in general. Consequently, after a few minor modifications, their results regarding 
the possible downstream developments of the flow interaction apply equally in our case. Here 
we give a brief description of each possible outcome, further details being given in ref. [3]. 

The first possibility is that of far-downstream saturation where the wave-pressure amplitude 
is asymptotic to a finite non-zero constant, i.e. 

I (xl)l I 01 as Xl --+ ~ .  (3.60) 

In this case the interaction matches with the strongly nonlinear interaction for .~ = O(1) 
described by Hall and Smith [ 1 ]. For consistency, the coefficients of (3.59) must be constrained 
in the manner 

A B > O  as BCr < 0 ,  (3.61) 

where [3 = f3r + BiCi/Cr is real and the subscripts r and i denote the real and imaginary 
parts of a quantity in turn. 

Secondly, a singular response may occur at a finite position downstream (say xl = x~), 
whereby 

If(x1)[ ~ (x 7 - X l )  -1 as Xl --+ (x~)-. (3.62) 
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T--T 
I I I I 

Vortex I I I I 

Wave 
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", B 

I~(x,)l 

~- z t  

Figure 2. Schematic diagram depicting the behaviour of the vortex and the wave for the large-amplitude periodic 
solutions outlined in Section 3.2. 

At this stage, the buffer layers start to shrink and eventually merge with the critical layer when 
z~ - z t  = O(Re-1/t2) .  The 'new' critical layer is then of a non-equilibrium type wherein 
streamwise variations counterbalance viscous effects in the governing wave equations. In 
particular, this alters the calculation of the nonlinear coefficient in the associated wave- 
amplitude equation. See also, e.g., refs. [29, 35, 38, 39]. Again we require (3.61) to hold in 
order for this option to be valid. 

Thirdly, the waves may decay exponentially fast downstream. The vortex must persist, 
however, owing to its dependence on the global development of the wave solution overall z i 
and not on its local behaviour, as verified by the integral term J0. Once more, the associated 
criteria are given by (3.61). 

The fourth and final option is that of periodic or bounded motion, which can be rather more 
subtle than the others in some circumstances, with the interaction developing a two-phase 
cycle far downstream. The first phase is similar to the third option, having the waves decaying 
rapidly to leave pure vortex motion. After a distance of O(L) say (where L >> 1), the brief 
second phase, of extent O (L-1), comes into play. This phase sees the wave-amplitude growing 
explosively and reactivating full vortex/wave interaction, only to decay again in a similarly 
fast manner. Figure 2, adapted from [3], describes the behaviour of the vortex and the wave 
in a little more detail. The conditions to be satisfied by the coefficients here are 

A B  > O and BCr > O. (3.63) 

The second condition, by the way, corresponds to the nonparallel-flow effects being stabilising 
for Zl negative but destabilising for Zl positive. 

We note that other solutions of (3.59) exist but none of these are compatible with the input 
condition f ( - c ~ )  = 0. The above options are discussed further in Section 5. 

4. Strongly Compressible Interactions 

4.1. G E N E R A L  P R A N D T L  N U M B E R  

Here we examine the compressible inflectional-wave/vortex interaction, derived in Section 3 
above, in the limit of high Mach number. We initially allow the Prandtl number to be arbitrary 
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but later, for reasons which will become apparent, we apply the restrictions 0 < a < 2 and 
a # 0.5. 

The oncoming basic-flow profile is chosen to be the Blasius one, defined by 

df 
0"o = ~Zz, (z*), /3o = 0, (4.1a,b) 

where f satisfies 

daf  1 d2f 
dz,----- 7 + ~ f dz,2 - 0, (4.2) 

subject to 

df df 
f(0)  = ~ (0) = 0, dz* ( ~ )  = 1, (4.3a-c) 

and z* is the Howarth-Dorodnitsyn variable defined as 

fo ~ d~1 z* = . (4.4) 

The basic-flow density is/~0 = To 1 via the equation of state, while the basic-flow temperature 
To satisfies 

d2T 1 dT0 ( d 2 f ~  2 0.-1 dz *---~ + 2 f ~z* + (7 - 1)M 2 ,---\dz.2} = 0, (4.5) 

subject to 

T0(0) = Tw, T0(oo) = 1 (imposed), (4.6a,b) 

from the energy equation. 
Although an explicit solution for 7'0 is generally unobtainable (but see 4.2 below), we can 

determine its asymptotic form, as z* -~ c~, which is important below. In fact two types of 
asymptote emerge, corresponding to a < 2 (when the forcing term in (4.5) is negligible in the 
far field) and a _> 2 (when the forcing is significant). We focus our attention here on the first 
case where it is found that 

To "~ 1 + 2 k M ~  e_trZ2/4 (4.7) 
a Z  

where Z = z* - 1.731 and k is an unknown O(1) constant related to the global solution for 
7~o via the expression 

[o'ZetrZ2/4 ] 
k =  z~lim [ ~ (20o(Z)-1)  . (4.8) 

Here the asymptotic expansion 

f ~ Z + 2#aZ-2e-Z2/4(1  - 2Z -2 + O(Z-4)) (4.9) 

as Z -+ ~ ,  where #a ~ 0 .468 [40], has been used in deducing (4.8). 
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To establish the critical-layer location (say Z = Zs) we use the inflection-point condition 
(2.7), which has the equivalent form 

To dz(7° = 2 dTo dUo at Z = Zs. (4.10) 
dZ 2 dZ dZ 

This simplifies to 

dTo l f T o = 0  at Z = Z s ,  (4.11) 
d--2- + 

using (4.1a) and (4.2). Then, assuming Zs >> 1, it follows from substitution of (4.7) into 
(4.11) that 

ke~Z2 /4 0- 
Zs - 2(20--  1 ) M £ '  (4.12) 

which bears the approximate solution 

Zs = 21'/o 1/2 (4.13) 

where r ~ [In M2] 112. Clearly a = 1/2 is not admissible in the light of (4.12) and below, and 
indeed the restriction 0- > 1/2 is needed to keep Z, positive. This result also ties in well with 
Gmbin and Trigub's [13,14] analytical work on hypersonic boundary-layer stability, where 
the same conditions on a emerge upon seeking the critical-layer location. Notice that the 
factors (20- - 1) and so on in (4.12) are products of the basic flow features combined with the 
generalised inflection-point condition. 

We now proceed to analyse the flow structure in the vicinity of Z = Z,,  where a 
temperature-adjustment layer of relative thickness O(1 ' -1 )  is known to exist [9]. We define 
the local coordinate 5 by 

1-' 
,Z'- 0.1/2 (Z-  Zs) (4.14) 

and, after a little working, find that 

00 ,~ 1 + Lr(1/~r-1)M~2/'r e-~', (4.15) 

7~o ~ 1 + (20- - 1) (4.16) 

where 

Z = - # a  2(2d-- 1)k ~,0-1/2j (4.17) 

is an O (1) constant. Moreover, since (_.ro lz=z 8 determines the principal wavespeed, we have 

co ~ 1 + Lr(U~r-1)M~ 2/~. (4.18) 

In passing, it is worth observing that 

9 "~ M 2 f f  + Zs + I7/1 -  ̀ (4.19) 
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Figure 3. Sketch of the governing flow structure of the wave/vortex interaction for Moo >> 1. 

in the temperature-adjustment layer (with local coordinate I7"), where 

/? i f= ('i'o/M2 ) dO (4.20) 

is an O(1) constant since T0 ,~ M ~  when 0 = O(1). The asymptotic form (4.19) demon- 
strates that he buffer layers and the critical layer, which are embedded in the relatively thick 
temperature-adjustment layer, have been shifted by an O(M~) amount in 0 from the wall 
(see Figure 3). 

The approximate system for the leading-order wave pressure, 

( 1 )2 d2po 2e -~ dPo "5, 2 1 + e - ~  
d~ 2 (1 - e -~) dZ, (2a - 1) Po = 0 (4.21) 

with 

Po(+OO) = 0, (4.22a, b) 

arises from (3.11), (3.12a,b) after the transformation to £'-space, with 

F 
(ao, flo, 70) = ~ (~0, l~0, q0) + O(F -1) (4.23a-c) 

here characterising the wavenumber expansions associated with the vorticity mode [9]. An 
investigation of this system by asymptotic analysis reveals that the wave pressure decays 
exponentially fast at the outer edge of the temperature-adjustment layer (as £' --+ oo) and 
doubly exponentially fast at the lower edge (as £' -+ -oo); this agrees with the findings 
of Smith and Brown [9] for unit Prandtl number where, moreover, the authors obtained an 
explicit solution for Po (see also 4.2 below). 

The higher-order mean-flow and density terms ~rl and fil follow quite simply through 
examination of the global structure of the Blasius flow. We write 

~r = O(r/), t5 = t3(~7) (4.24a,b) 

where 

z; (~, O) (4.25) 
r / -  (2G,~)1/2 
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is the global similarity variable and 

fo0 1 Z~(:2, 0) ---- ~ dO1 (= z*(y) + 0(:2 - :2o), as :2 -~ 20). (4.26) 

Moreover, we impose (C2o) 1/2 = 1 so that r/--+ z * / 2  as :2 --+ :2o. Thus, because 

Pl = lim ~5(rl) (4.27) 

and 

o o [ oz;/o:2 ,7 ] o 
0:2 ~0--~+ [(2C:2)1/2 2:2_ Or/' 

it follows that 

/01 1 - -  = - ~ Cypo~.  

(4.28) 

(4.29) 

blcr 1/2 1 
Uo - co - - -  (1 - s), T0 = 1 + s a (4.34a,b) 

1-'/9o ( 2 a -  1) 

By a similar argument we may show that 

~T 1 = --lc0~/'0~. (4.30) 

An important aim now is to determine the form for the wave-amplitude equation as 
Moo --+ c~. There are at least two such forms, as discussed successively below. We examine 
each contribution in the equation starting with the external non-parallel tenn. Specifically we 
are interested in the quantity (Ga + - Ga) ,  as defined in (3.31a), and a little work shows that 

\ M  2 

oo ~ro0 f 
-2c2~Jo (Cro -~)2~r2 PoPoo d0, (4.31) 

where the properties (4.29), (4.30) have been used in the derivation. The first integral in (4.31) 

is negligible provided we have [c2] >> r(l/~-l)M~ 2/~. Therefore, with the dominant part of 
the second integral lying in the range (go, g+) (owing to the relative smallness of the wave 
pressure outside the temperature-adjustment layer), (4.31) simplifies to 

- (70o - PoPo9 dO. (4.32) 

It is convenient here to introduce the transformations s = e -~, where we find that 

e2(2(7-  1) 3 [ o o  
G + - G~- m ~-~a5-~3 F4M~°2 J0 ( l - s )  4 s  PoPos ds. (4.33) 

The properties 
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have been used in the above derivation, where 

L ( 2 o -  1) F1/~M~o2/, ~ 
b l  - 2 ( 7 3 / 2  

and 

(2o - 1) 
Po - 2o" 

Under the new transformation, the wave pressure Po satisfies 

s(1 +a )  ( 8(r )2 
s2 poss + -~ -- ~) Pos - ~/2 l +  ( 2 o ~ 1 )  Po=O,  

(4.35a) 

(4.35b) 

(4.36) 

subject to 

P0(0) = P0(c¢) = 0. (4.37a,b) 

Unfortunately this system does not appear to yield an explicit solution for Po for general 
values of o., unlike the model-fluid case later. 

Next, the quantity involving (G + - G~-) in (3.58) is found to reduce to 

(2o ' -  1) 3 fo °¢ G+ _ Gb ~ 4--~-/2-&-~13 F3M~ 2 ( l - s )  4 s  PoPosds. (4.38) 

We now consider the linear critical-layer growth effects from (3.58) and in particular, the 
coefficients Ul, u2 defined in (3.51a,b) above, where dominant balances imply that 

(2o- - 1) 4 (2o. - 1) 40~0C2F2. (4.39a,b) 
t/1 ~ 16o. 4 F 2 ,  / /2  ~ 16o.9/2 

The Stokes layer effect (proportional to Qw) can be seen to be negligible, as a result of the 
relatively tiny wave pressure outside the temperature-adjustment layer. 

The balancing of the linear and non-parallel contributions forces the interaction coordinate 
xl to grow with Mach number in the fashion 

271 ~ r - 1 / 2 [ C 2 1 - 1 / 2 .  (4.40) 

Finall,' to preserve the nonlinear interaction it necessarily follows that 

~ P(1/atr-1/6)M~2/3trl¢2ll/2, (4.41) 

by balancing the nonlinear contribution with, for example, the linear critical-layer term. 
Writing c2 = t~52, where 52 is O(1) and ~ >> FO/#-I)M~2/~, we rescale f, 271 in the 

manner 

= F(1/3cr-1/6)M~oE/a(rts1/Ef(x,1) -[- • • • ,  (4.42) 

Xl --= 1-'-1/2(i-1/2:~I, (4.43) 
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and then the leading-order balances in (3.58) equate to 

i(2a--1)H~ 
1+  rra25,o2 ,][:-~1 i&°?'z:r'r(xl)]o ''/2 

= (~oLi2/~(2~_11~c,/~ 1 - ~ ]  1--~o ] 
(4.44) 

Here 

s 
H = (1 - s) 4 ToPos ds, (4.45) 

is a real integral which depends exclusively on a. To analyse the associated flow behaviour 
downstream we write 

where 

z~OC2 G~/2 : ~  + A~ I~Z(u)[ du = 0, (4.46) 

0 = - 1  i ( 2 o  - 1 ) H  
7ra2~02 , (4.47) 

A= 8a5/3(2/3)(2/3)(-2/3)"~4 (1- &~)2 (1- 2&2~ 
(~0L)2/3(20. _ 1)3C4/3 ,~2 ] ,~2 ] "  (4.48) 

Setting ~ = /~(x l )  exp[iO(xl)], with R, 0 real functions, leads to a phase equation for 0 and 
the following modulus equation, 

d:~---~ + /~ J - ~  /~2 du = O, (4.49) 

where R = [CI2/C'r is real. This yields the simple result 

/~ = - (:2s - yq)-l,  (4,50) 

suggesting that the flow solution becomes singular as ~1 --+ .~- downstream. Furthermore, 
since/~ is real, we require (K/A) < 0 as a necessary constraint which, given the values of 
and C', would force the wave angle to lie in the interval (7r/4, 7r/2). This result would appear 
to be quite restrictive. 

The above is one form for the interaction at large Mc~. A second form follows from further 
scrutiny, indicating that the flow interaction is governed by a more generalised solution 
upstream, and that (4.44) merely represents one of several possible transition paths. The 
corresponding scalings are found to be 

xl = F - 1 / 2 a M ~ l ,  (4.51) 

= P(5/6a-2/3)M~5/3ar(OCl) + ' " ,  (4.52) 
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and, upon setting # =/~(~1) exp[i0(~l)], the modulus equation is 

d/~ .f,, R2(8 ) ~ 1  + .AR _ 08 -- ]~:~lJ~ ----- O. (4.53) 

There is in fact little simplification so far from the original equation. Also here 

~ = COLoL(2a-1)2 ( H1 6cr2t13 ) 
471"(75/2 ~ + (2(7- 1) 2 (4.54) 

denotes the real quantity defined in Section 3.3 above, while 

1 s2p2s-~  1 +  p2 ds, (4.55) 
s(1 s) 2 (2o ' -  1) 

q3 = 1  ( 2 a - 1 )  2 [(d3Po'~ ] (4.56) 
6a272 [ \  ds3 ) s= i  " 

Because of the complicated coefficients still involved it is a considerable task to obtain 
numerical solutions describing the complete wave/vortex interaction under given experimental 
conditions. Thus, even before addressing (4.53) above, we must first solve the system for the 
wave pressure in the temperature-adjustment layer to determine H, H1 and q3 as well as 
obtain the eigenrelation that determines 70, and then solve the basic-flow temperature system 
in the entire boundary layer to determine L. However, the special case of a model fluid, i.e. 
a Chapman fluid with unit Prandtl number, addressed next, is found to yield a considerably 
simplified analysis, with both P0, T0 shown to have explicit solutions. 

4.2. THE MODEL FLUID 

Here we re-consider the analysis derived in 4.1 above, in the special case of unit Prandtl 
number. A summary of the important results is now given. 

Firstly, we note that the oncoming Blasius flow as defined in (4.1)-(4.4) is independent of 
the Prandtl number, in contrast with the basic-flow temperature system (4.5), (4.6a,b) which, 
for cr = 1, bears the solution 

(7 - 1) M2Uo(1 _ Uo) + (Tw - 1)(1 - Uo), (4.57) 7~0 = 1 + ~ 

a result sometimes referred to as Crocco's Law. Given (4.57) we are able to evaluate the 
constants k, L defined in (4.8), (4.17) respectively. It is found that 

1 
L = (4.58a,b) 

¢ ( 7 -  1) 
1 

k = ~ ¢ # a ( 7 - 1 )  and 

where 

1 (Tw - 1) 
¢ --- 2 + ('r - 1 ) M L  

is a linear transformation of the wall temperature. 

(4.59) 
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Next, we address the wave-pressure system in the temperature-adjustment layer, given by 
(4.21), (4.22a,b). For unit Prandtl number this system is known to yield the neutral solution 

PO = 81/4 e(1-s)/4 (4.60) 

with the corresponding dispersion relation [9]. 

"~0=~  or a g + N =  (4.61) 

Subsequently, with Po known explicitly, the terms H, H: ,  q3 defined in (4.45), (4.55), (4.56) 
follow as 

6 1 (2err)l/2, q 3 -  1 H - 1, H1 = ~ - - 5 '  (4.62a-c) 

with 

~0 ~ 8-1/2 I = ( ~ - ( )  e (1-s)/2 ds. (4.63) 

Upon substituting the above values for L1, H, H1, q3, 70, and otherwise setting a = 1 in 
(4.53), we may deduce that the governing wave-modulus equation is 

d/~ ( C60 
[(2eT ' r )  1 /2  - -  1]) :~1/~(:~1) (1 + 12/71 "2) ~ l  + \27r(7 - 1)¢ 

= { (2 /3 )2 /3 ( -2 /3 ) !¢2 /3 (7-  1)2/3(1 - 1662)2(1 - 32& 2) 
3262/3C4/3 } h(m') L IR2( )I 

k 

(4.64) 

in this model fluid case. 
Expressed in terms of (3.59) above, we have the coefficients being 

C6~o [(2err) 1/2 - 1], (4.65a,b) = I i / T r -  1, / 3 -  27r(~-- 1)¢ 

fi~ = (2 /3 )2 /3 ( -2 /3 ) !¢2 /3 (7 -  1)2/3(1 - 1662)2(1 - 3262) 
3262/3C4/3 (4.65c) 

It was mentioned in Section 3.3 above that the condition A B  > 0 has to be satisfied for each 
of the four possible types of downstream behaviour. With t~0 assumed to be positive, it follows 
that 

(1 - 3262)¢ -1/3 > 0 (4.66) 

must hold. Next, with Cr = - 1 from (4.65a), we observe that 
N _ 

(BCr)¢ < 0. (4.67) 

Consequently, two distinct cases emerge corresponding to the sign of ¢. Firstly, for ¢ > 0 
(or Tw > 1 - (7 - 1 ) M 2 / 2  from (4.59)), we h a v e / ) C r  < 0 so that any one of far- 
downstream saturation, finite-distance singularity or exponentially decaying waves may occur 
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and furthermore, from (4.61), (4.66), the wave angle arctan (/~0/t~0) is confined to the interval 
(7r/4, 7r/2). Secondly, for ~ < 0 (OrTw < 1 - ( 3 , -  1)M2/2),  wehave/3Cr > 0 sothat only 
the option of periodicity may occur with the wave angle now lying in the interval (0, 7r/4). 

5. Final Comments 

In the present study on inflectional-wave/vortex interaction in boundary layers we have 
considered two distinct regimes of compressibility, namely when Moo = O(1) (covering the 
subsonic and supersonic ranges) and when Moo >> 1 (coveting the hypersonic range). In each 
case, the interaction is found to be governed effectively by a nonlinear integro-differential 
equation for the wave pressure, and this has been shown to yield four kinds of downstream 
behaviour which we address once more here. The first option has the flow solution saturating 
far downstream, with the wave-pressure amplitude asymptoting to a constant non-zero value. 
Moreover, in the limit zl ~ O(Rel/4), the interaction develops into the strongly nonlinear 
type described by Hall and Smith [1]; see also Smith, Brown and Brown [3]. Secondly, 
an algebraic singularity may occur at a finite position downstream. At the approach to this 
position, the buffer layers begin to shrink until finally, at a distance O(Re-1/12) away, they 
merge with the critical layer. When this happens, at larger amplitudes, the critical layer 
becomes of a non-equilibrium type and, as shown by Wu, Lee and Cowley [38] in shear layers 
for example, the nonlinear mechanics is significantly changed. As regards a next stage, we 
might expect a continuation into an algebraic singularity possibly leading to stronger Euler- 
type interactions [19] or, instead, the wave-pressure amplitude may be damped to a zero or 
non-zero finite value. A full examination of the wave/vortex compressible interaction in this 
regime would appear worthwhile and efforts may be directed towards this in the future. Thirdly, 
the wave pressure may die out in an exponentially fast manner to leave, in effect, pure vortex 
motion downstream. This feature, which has been found to occur in a number of previous 
studies on non-linear wave/vortex interaction [28,41], demonstrates that the interaction can 
serve to alter the mean flow to a stable one comprising longitudinal vortices. The fourth 
and final option seems at first sight a rather curious one. It involves a periodic response 
which may consist of long quiescent regions of predominantly vortex flow, interspersed with 
brief eruptions of wave/vortex interaction. It is interesting that the criteria associated with 
this option (see Section 3.3) are different from the first three, making it possible to predict its 
occurrence through calculation of the interaction coefficients alone. This would be particularly 
useful when seeking computational results, since the third and fourth options may be virtually 
indistinguishable until the first 'burst' appears some way downstream in the latter option. The 
above options are identical in nature to those found in the related incompressible work of 
Smith, Brown and Brown [3], indicating that the basic form of the wave/vortex interaction 
remains intact at non-large Mach numbers. 

Concerning the hypersonic theory of Section 4, one of our current goals is to identify the 
Mach-number regime for which this theory first breaks down as Moo continues to increase. 
Several possibilities present themselves. It was thought first that the relevant regime is Moo = 
O[Re~r/[4(3~+l)]], corresponding to the streamwise variations of the critical layer altering 
the flow structure within. Further scrutiny however suggested that these effects would not 
significantly alter the flow interaction. Next it was thought that the basic flow should become 
fully non-parallel in the temperature-adjustment layer when Moo ,,~ Re ~/[4(2~+1)], but that 
turned out not to be so and this option also was dismissed. Our current belief is that there are 
two possible outcomes depending exclusively on the size of the Prandtl number, specifically 
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whether a is greater than or less than 2/3. If a > 2/3, it is believed that the hypersonic- 
interaction regime involving external shock-layer influence for which Moo = O(Re  1/6) 
enters [34,40,42]. On the other hand if a < 2/3, it is believed that the new regime enters when 
Moo ~ Re  a/4 (neglecting powers of In Re) and this corresponds to the buffer layers merging 
with the critical layer and/or the temperature-adjustment layer. However, this latter outcome 
would preclude dealing with air flow, for which the Prandtl number is approximately 0.72, and 
so perhaps the former case is the more relevant one. We should reiterate here that our work 
in the hypersonic range has featured a pair of vorticity waves. However, alternative problems 
involving a pair of acoustic waves, or even having one acoustic wave and one vorticity wave, 
could produce interesting results and hopefully will be addressed in future research. 

Further computational work on the hypersonic interaction theory of Section 4 could be 
helpful, with a view to evaluating the interaction coefficients for various values of wave 
angle, Prandtl number and wall temperature. The comparatively simple form and subsequent 
evaluation of the interaction coefficients in the model-fluid case of Section 4.2 should provide 
a useful check on the accuracy of any general numerical scheme used. 

Direct practical questions resulting from this work concern three issues: first, whether 
the wall conditions can be altered to favourably affect hypersonic transition [(3.58) tends 
to suggest surface cooling could be beneficial]; second, whether the theory applies also for 
axisymmetric base flows (the short scales suggest it does); and third, where precisely does the 
hypersonic transition originating at the edge of the boundary layer eventually influence the wall 
properties to a substantial extent? These require further theoretical research. Other possible 
extensions to the present work would include analysing the hypersonic problem for Prandtl 
numbers a near 1/2 (where the current flow solution becomes singular, heralding a change 
in the decay behaviour near the free stream) and a > 2, adapting the current theories to the 
general case of Sutherland's viscosity-temperature law, adding a small amount of cross-flow, 
or having a non-uniform pressure gradient, caused by an uneven surface for example. 
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Appendix A. The Stokes Layer 

This layer, of relative thickness 0(£3), is located immediately adjacent to the wall. It bears 
some influence on the wave dynamics in the core through the term Q~ of (3.26), which we 
now formally derive. 

Writing ~3 = eaY, the flow variables expand as 

fz = ea Aw~l + . . .  + e7 ~E  + . . . ,  (Ala) 

. . . .  + e40E + . . . ,  (Alb) 

if) = e~bE + . . . ,  

/~ = 1 + . . -  + (e7/~ (°) + el°/~ (1) + e 1 3 ~ ) E + . . . ,  

= Pw + " "  + e7jSE + ' " ,  

(Alc) 

(Ald) 

(Ale) 
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fz = #w + " "  + e7 f zE + ' " ,  

'~ = Tw + ' "  + e7~'E + ' " ,  

(All) 

(Alg) 

where the terms multiplying E are the wave contributions and the remainder denote mean-flow 
and small vortex quantities. 

The equations governing the wave motion are found to be 

-iaoco~ + iaopwfz + PwC~fl + pwd)~ = 0, (A2a) 

- iaocopw[~,~]-  1 [ 0 ]/5(0) 0 2 7 M  2 iao, ~-~ + #w ~ [z2, ~b], (AEb,c) 

1 
15~),n = O, /~')" = O, -iaocopwO = 7 M  2 P,9 + #wCJ~)9, (A2d-f) 

~Tw + PwT' =/~(o), (a2g) 

_ i O t o C o P w , = c r _ l O (  Of") ( 0 ' - 1 )  #w -Off - iaoco 7 /~(o). (AEh) 

These equations, in conjunction with the boundary conditions z2 = ~ = ~b = 0, ~' = T0 (say) 
at ~ = 0 and matching with the core-flow solution as # --+ co, yield 

[(z, Co] -- l ( 1 -  e-mft) [ao, - i  O ] , (°) 
aoco Pw T M 2 

16(o) = p(O) (Xl, O, ~'), ~(1) = p(1) (Xl, O, Z,) 

= ~oe-m,f¢ + ( 7 -  1___~)~6(o)( 1 _ e_mtg) ' 
Pw7 

= (~(o) _ PwT)Pw, 

and 

+iaoCo (pwTo - #(°))(e-m'u - 1 )  + --~ - y d_ __ml -- 

(A3a,b) 

(A3c,d) 

(A3e) 

(Aaf) 

(A3g) 

where the exponential factors 

m -~ ( - i a o c o / C ) l / 2 p w ,  m l  ~ t r l /2m (A4a,b) 

are both complex constants. Here, in addition, the mean-flow properties #w = CTw, Tw = 
p ~ l  from the viscosity-temperature and state equations have been applied. It now follows 
from (A2f) and (A3g) that 

(A5) 
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as ~ --+ c~, where we have written 

/~(o) =/5or(x1) cos/3o2 ' 7~o =/5~oTwr(zl) cos/3o2 (A6a,b) 

and/Sw(= Po(0)) and T~ are constants. Hence p0), as defined in (3.1d) above, must satisfy 
the inner boundary condition 

aoCoPwTM ~ 1 ( '7 -  1) 
: _ 

\ o9 ", .  

so that 
2 2 2 / 

aoCoPwTM~ 
Qw = L Pw O"1/2 

immediately follows. 

TrY- lPW/'(Xl) COS/~0 ~' , 

(A7) 

Pw 7 
(A8) 

6. Appendix B. The Critical Layer 

Two main results are sought through analysing the flow structure in the critical layer. Firstly 
we require the phase difference D + (x 1 '~') -- D -  (x 1, z)  in (3.52). The work needed to evaluate 
this quantity from first principles is considerable; however, a much easier method exists, based 
on the classical argument that (D + - D - )  equates to (-4-ilr) multiplied by the coefficient of 
In IYI[ in the asymptotic expansion of Y1-2/55~ as [I:][ -~ 0, where/~5 is defined in (3.33d) 
(see e.g. Lin [36]). The choice of sign depends on which logarithmic branch is taken as I,~ 
increases from negative to positive via the complex plane; classical theory has proved that the 
positive sign is always taken when the basic-flow critical-layer shear, bl is positive, while the 
negative sign is taken if bl is negative. Hence, If we assume that bl > 0 then (3.54) follows. 
The second result obtained here is the evaluation of J0(:rl, ~), the wave-amplitude-squared 
forcing of the vortex. Details of this are now given. 

The buffer-layer analysis of 3.2 infers the following expansions as YI --+ eUZy, where Y 
is the O (1) critical-layer coordinate: 

~z = co + e2blY + £3C2Xl q- e4bzy2/2 + 

+eSUo+e601 + " .  + eTu2 + . . .  +c803 + . . . ,  (Bla) 

= Vo + eV2 + e2~ + . . .  + e3V4 + . . .  + e 4 ~  + - . . ,  (Blb) 

Z~ = C-IvI, r 0 + vI, rl q----  q- £1/~r2 q - . . .  q- £21/~r 3 q - . . . ,  (Blc) 

/5 = 1 q- e3p0xl q- e6plx~/2 -k- e7p2 + eSp3 . . . .  , (Bld)  

= PO + £2plY + e3(pla2 + PlO)Xl + eap2y2/2 + " ' ,  (Ble) 

# : #0 + e 2 # l y  q- e3(#lfi2 + #lO)Xl q- e4#2y2 /2  + ' " ,  (Blf )  

= To + e2T1Y + e3(Tla2 + TlO)Xl + e4Tzy2/2 + . . . .  (Blg)  

Here it is understood that the terms capped by a tilde 0 comprise both wave and vortex/mean- 
flow contributions, and hence may be written as On = UnEE + U*EE- 1 + UnN for n _> o, and 



642 D.A.R. Davis and ET. Smith 

similarly for Vn' l~n, etc. Both the wave component multiplying E and the mean component 
are independent of X and {1 until n _> 3, when the latter has to include contributions 
proportional to E 2 and E -2. The expansions (Bla-g) also contain odd powers of e 1/2 (not 
shown) which are forced by the buffer layer. These terms do not affect the value of Jo however, 
and are therefore not addressed here. 

The important leading-order wave solutions are 

/o 1 / ob,oo  
woE--  #ofM 2 [ / \  ~oo / 02 exp - i  (aob]po 1/3 

i (O~o -gOo) 
v2E- aoblpoTM 2 \ ~ 

i OWOE 
UOE --  0~0 0 ~ - '  P2E "= pO(Xl, ,~), (B2a-d) 

where consistent buffer-layer matching (as [Y[ --+ oo) has been applied. 
For the vortex/mean-flow, we find that simple solutions hod at the first three orders. These 

are 

( blPla2.~ xlY; (B3a--d) P2N = V2N = WON = 0, UON + dl PO ] 

P3N = W l N  ---'= O, UlN = b l y 3 / 6  + u4(xl,O,z), 

V3N = (a2bl -c2  plVo'  PlOeO'] 
Po ~oo / Y; (B4a--d) 

and 

P4N = x 3 p 2 / 6 ,  W2N = O, 

U2N = (b3a2 -b d 2 ) z l y 2 / 2  + / ~ ( X l ,  2), V4N = -A4(xl, 2), (B5a--d) 

successively, where/£ is an unknown constant, P2 is the local cubic derivative of the basic- 
flow pressure and matching with the buffer layers holds as IYI ~ oo. Additionally we note 
the solutions 

#o = CTo, To = po 1, (B6a,b) 

linking P0, #0 and To. At the next order, we need only concern ourselves with the spanwise- 
momentum equation for W3N which, when integrated between (-cx~, c~), determines J0- It 
is 

po i~o(~,;EWoF - ~,o~o;~) + ,,2E -b-Y- + ~'~ -b-W 

02W3N 
= #0 O y  2 , 

+ w o E s +  OE O~ J 

(B7) 
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which leads to 

[ 0,tO3N ] Y--~oo __ P0 2 IW0EI z + VZF, + rUE OY ] 
J0-= [ ~ J Y ~ - ~  - #o to 

using (B2c) to substitute for UOE. Further substitution of (B2a,b) for VZE, w 2E respectively, 
and subsequent manipulation of the integral yields 

2~r(2/3)2/3(-2/3)! 0 ( 0/50 2~ 
Jo = (TM2)2(aobl ) (5 /3 ) (C2/po)2 /3  0--'-~ -ffffz ] "  (B9) 

Here ( - 2 / 3 )  ! denotes the gamma function 

/5 F ( z )  = t z - l e  - t  dt (B10) 

evaluated at z = 1/3. 
It is worthwhile mentioning here that in the Hall-Smith theory (where :~ = O(1)), a jump 

term equivalent to (B9) exists. This was calculated in the incompressible regime by Hall and 
Smith, but later J.W. Elliott (personal communication) determined the compressible value to 

j _ 

be 

~b 0 015 1 5 e  (2  T(O OT) Pe l l f ~ f e e  
( 7 M 2 )  2 ~ ~ - 3  + +  ) p + (1 + f2------~] 

(B l l )  

where b, p, #, T denote the values of the global basic-flow quantities U0,/5, #, 2P at 0 = f (z, ~), 
and/5(~, ~,) denotes the global buffer-layer wave pressure. Also 

27r(2/3)2/3(-2/3)  ! 
~b(~,2) = [(oLb)5p2#4( 1 + f2)1015/3 (B12) 

and viscosity is a general function of temperature. Encouragingly, the result matches to (B9) 
as • @ 0 in the special case where Chapman's viscosity-temperature law holds. This, in turn, 
shows that (B9) retains its fundamental form from zl = O(1) through to zl  = O(e-3),  and 
hence the wave-wave forcing is essentially invariant in nature within this range. 
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